
Stochastic Gradient Descent and Learning Rates

John Abrahams

May 2024

It is not enough to be industrious; so are the ants. What are you
industrious about? - Henry David Thoreau

1 Introduction

This paper was written to summarize the work done under Professor Arielle
Carr and Ph.D student Yuesheng Wu at Lehigh University.

We begin with an introduction of stochastic gradient descent, which we will
often reference as SGD in this paper. Next we summarize Elastic Averaging
SGD, a method for computing stochastic gradient descent in parallel computing
environments. We discuss the work done with Yuesheng Wu regarding finding
optimal learning rates for the ADAM function, and we end with a practical
implementation of SGD with simple least-squares optimization.

2 Introduction to Stochastic Gradient Descent

Stochastic Gradient Descent is an algorithm that is commonplace in almost
every machine learning problem. Stochastic Gradient Descent succeeds for two
reasons:

1. It is not nearly as expensive as Gradient Descent
2. It generalizes well to unseen test data.
The point of stochastic gradient descent (as you may have already guessed

by its name) is to introduce randomness into finding the optimal value. Finding
the exact minimum is akin to fitting n data points with an n − 1 polynomial:
we over-fit to our training set and do not perform well on unseen data. SGD
introduces the concept of a mini-batch, which allows us to compute the gradient
with respect to only some observations in our dataset. This solves both of our
problems: it allows us to be computationally efficient and generalize well to
unseen test data.

1

3 Elastic Averaging with Stochastic Gradient
Descent

Stochastic gradient descent is incredibly powerful. Despite its computational
efficiency with respect to gradient descent, it still remains expensive. Elastic
Averaging is a method that works to provide parallelism for the SGD algorithm
and solve this bottleneck. The term “Elastic” is derived from the Greek word
“elastikos” meaning “propulsive.” This is a nice way to sum up exactly what the
algorithm is doing: Worker threads drive the master position forward without
venturing too far away. There are two key-ideas to this algorithm:

1: Workers maintain their local parameters.
2: We do not let local parameters go far away from the central parameter.
We begin with the following problem statement:

min
x

F (x) := E[f(x, θ)]

Note that F (x) =
∫
Ω
f(x, θ)P(dθ), where x is the model parameter to be esti-

mated. This is all to say that f(x, θ) is an unbiased estimator of f(x). This
allows us to sample from the dataset according to probability distribution P.
The optimization problem above becomes:

p∑
i=1

[fi(w
i)− ρ

2
||wi − w̃||2]

where p ∈ N is the number of workers. This is our objective function. The
latter term, ρ

2 ||w
i − w̃||2, does two things: it makes sure the workers do not go

too far away from the central parameter (as explained above), and it provides
the elastic force to move our central variable forward. The ρ allows us to modify
the tradeoff between exploration and exploitation. For example, smaller values
allow for more exploration: it allows the xi to fluctuate further from the center
variable x̃.

We take the gradient descent step with respect to xi and x̃:

xi
t+1 = xi

t + η(git(x
i
t) + ρ(xi

t − x̃t))

x̃t+1 = x̃t + η

p∑
i=1

ρ(xi
t − x̃t)

Where η is the learning rate and git(x
i
t) denotes the stochastic gradient descent

of F (x) at iteration t for worker i. Notice the elastic force is defined as ηρ(xi−x̃)
for each worker, which then updates the center variable. The elastic force brings
the workers back after moving forward from their stochastic gradient descent
calculations. After a fixed time period, the value of the master updates with
respect to the elastic force, moving the master closer to a local minimum in a
stable manner. The algorithm is here below:

2

Algorithm 1: Asynchronous EASGD: Processing by worker i and the
master
Input : learning rate η, moving rate α, communication period τ ∈ N
Initialize: x̃ is initialized randomly, xi = x, ti = 0

1 repeat
2 x← xi;
3 if (τ divides ti) then
4 xi ← xi − α(x− x̃);
5 x̃← x̃+ α(x− x̃);

6 xi ← xi − ηgi(x);
7 ti ← ti + 1;

8 until forever ;

Notice what the algorithm is doing: We continue with regular stochastic
gradient descent. Then, at fixed intervals, we move the workers back towards the
master position and move the master position down according to the worker’s
elastic force.

4 Choosing Optimal Learning Rates

Learning rates are not trivial! They are incredibly important in developing ef-
fective gradient descent algorithms. For the ADAM algorithm, we initially used
the following learning rates: {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}We
then incremented/decremented around them with the following code:

de f cont inuous a lpha (alpha) :
s t a r t = alpha − . 5∗ alpha
stop = alpha + .5∗ alpha
step = .1 ∗ alpha
alphas = np . arange (s ta r t , stop , s tep)
re turn a lphas

We optimized based on how quickly we converged and our overall training loss
during the 20 epochs. For the ADAM optimizer, we found the learning rate
α = 0.0781 provided the fastest convergence and best training loss.

5 Random Kaczmarz and Least Squares Opti-
mization

In this section, we summarize the stochastic gradient descent algorithm used
for computing Ax = b. This algorithm is called Randomized Kaczmarz. We
randomly sample rows in the matrix A, and continually calculate the gradient.
This is an incredibly intuitive algorithm that helps in understanding what is
really going on behind the scenes. For example, one may ask, why is this
considered a stochastic gradient descent algorithm? We introduce that below:

3

Gradient descent for least squares takes on the following form for minimizing
the objective (loss) function:

F (x) =
1

2
||Ax− b||2 ≡ 1

2

∑
i

(aTi x− bi)
2

Regular Gradient Descent requires we take the derivative with respect to x:

∂f

∂x
=

∑
i

ai(a
T
i x− bi) ≡

∑
i

aia
T
i x− aibi

As a quick sanity check, we make sure our dimensions are correct for the
matrix multiplications we are about to do:

ai : n× 1

aTi : 1× n

bi : scalar

x : n× 1

We also notice our sum is equivalent to the following:

a1a
T
1 x− (b1)a1 + a2a

T
2 x− (b2)a2 + · · ·+ ana

T
nx− (bn)an

Grouping like terms:

a1a
T
1 x+ a2a

T
2 x+ · · ·+ ana

T
nx− ((b1)a1 + (b2)a2 + (bn)an)

In matrix form:

ATAx−AT b

We find that the normal equations exactly satisfy our loss function:

∂f(x)

∂x
= ATAx−AT b

How can we get stochastic gradient descent out of this? Stochastic gradient
descent tells us it is much more advantageous computationally to compute one

random ∂f(x)
∂xi

on each step. This corresponds to one row in the matrix, or one
observation in the dataset. We modify the algorithm slightly:

∂f(x)

∂xi
= aia

T
i x− aibi

Our gradient descent equation is:

xk+1 = xk−s∇f(xk) = xk−s(aiaTi xk−aibi) = xk+s(aibi−aiaTi xk) = xk+s(bi−aTi xk)ai

4

Figure 1: Convergence with Random Kaczmarz on 2x2 matrix

We choose s = 1/aTa:

= xk + (1/aTa)(bi − aTi xk)ai

We test the Kaczmarz iterations for two datasets, the former of small scale and
the latter of a much larger scale, with 1000 and 100 iterations, respectively,
using Julia. The code used is below:

func t i on o rd s t o ch g rad de s (xk , b , a i , a i t)
term = ((b − sum(a i t .∗ xk))/ sum(a i t .∗ a i t)) ∗ a i
re turn xk + term

end

For the following equations:
x+ 2y = 3

2x+ 3y = 5

We find that the solution converges to [1 1], as in Figure 1. Note the red star
indicates this value.

Now for a more impressive example. We develop a linear regression equation
using random data. The matrix is of size 100x2. The red star indicates the the
“best vector” found with the projection matrix: (ATA)−1AT b

Using the code above, we find in figure 2 that it does indeed converge.
Notice the difference of stochastic gradient descent for these two figures; with

an exact solution, we find the algorithm does converge but only after 10000 it-
erations. With a solution that is not exact however, we find we continue moving
around the minimum, touching it at times but never absolutely converging. No-
tice also we take an incredibly large step originally, followed by small oscillatory
steps toward the minimum in both cases. In practice, it is best to stop early
so as to avoid over-fitting for the larger case. However for the smaller case,
since there exists an exact solution there is no need to worry about over-fitting.
Therefore with SGD we get the best of both worlds: we are able to generalize
to unseen data when desired and find exact solutions when desired.

5

Figure 2: Convergence with Random Kaczmarz on 100x2 matrix

6 Conclusion

This independent study could not have been done without the lectures posted
on MIT OpenCourseware for 18.065 and the corresponding textbook “Learning
from Data.” Moreover, problem sets provided by Professor Steven G. Johnson on
Github for this course proved very helpful. Professor Arielle Carr and Yuesheng
Wu were very helpful as well.

Stochastic Gradient Descent is one of the most widely used optimization
algorithms in deep learning applications. Its ability to perform on unseen test
data remains unmatched. Moreover, EASGD provides an interesting application
with respect to providing parallelism to the algorithm. Random Kaczmarz
provides an interesting and more concrete application of SGD. It would be
interesting (potentially in future work), to find out what EASGD looks like in
terms of least squares.

6

