
HEIDI

John Abrahams

May 2024

“The truth... is much too complicated to allow anything but ap-
proximations”
- John Von Neumman

1



1 Introduction

Heidi is a misnomer for “Highlight Documents.” The purpose of HEIDI is to
highlight a specific section of a document (more specifically, a fixed number of
sentences) that is most similar to a given query. The algorithm was first created
in python for the Aequitas Capstone at Lehigh University. This paper aims to
prove the algorithm’s correctness. We will begin by introducing some theory:

2 HEIDI Algorithm

Assume our document D is comprised of n sentences, and correspondingly there
exists a function f that is able to convert our document to a matrix of size nxE,
where E is the dimensions of the dense embedding space we are converting to.
Mathematically:

f(D) : Document→ RnxE

Moreover, we assume f(D) is able to accomplish this perfectly with no errors
(i.e., assume the semantics and sentences are captured perfectly. this is seldom
true, but it is necessary for our proof of the algorithm below). We also assume
that our mapping is 1-to-1. That is, each sentence maps exactly to a vector of
size E. We will now introduce the algorithm here:

Algorithm 1: HEIDI

Input : D: Document
q⃗: Embedded query vector

Output: Most relevant document section
1 D∗ ← f(D)

2 D̃ ← D∗[k − j : j] ∀j ∈ {k, k + 1, . . . , n− 1, n}
3 M ← −∞ // maximum value
4 I ← NULL // index of the maximum value

5 for Di ∈ D̃ do
6 b← Diq⃗
7 if

∑
i bi > M then

8 M ←
∑

i bi
9 I ← i

10 end

11 end
12 return D[I − k : I]

Complexity: O((n− k)× E × n)
Unfortunately, I was unable to find a clever norm that is able to take into

account the direction of our resultant vector. If we had k = E, it would have
been suffice to introduce Energy, as defined in Gilbert Strang’s Learning from
Data, and maximize over this quantity:

bTDib

2



This would produce the desired scalar, but it would not give us the freedom
of choosing sentence lengths, which could be particularly restricting.

3 Proof

We will begin our proof with the following lemma:

Lemma 3.1. Loop invariant: The sum of elements in b is maximized over all
document sections D̃

Proof. Base case: for the current trivial set of document sections ∅, the max-
imum value is −∞ and maximum index NULL. Inductive step: if bi is the
maximum of {b1, b2, . . . bi − 1}, it will be chosen. Termination: When we are
done, i = n, and we maximize over {b1, b2, . . . bn}

Thus, it is proven.

Theorem 3.2. HEIDI finds the most relevant k sentences in a document.

Assumptions: f(D) captures the sentences in the document perfectly and
without errors. Moreover, f(D) captures the semantic meanings of the word
perfectly. We will prove by contradiction:

Proof. Assume bc is selected as the best choice, but b is more relevant. If b is
more relevant, then ∑

i

bci <
∑
i

bi

, which breaks the loop invariant proved in lemma 3.1. Hence, our assumption
is incorrect, and the indices corresponding to b will be returned as the best
choice.

4 Implementation

In practice our assumptions do not hold: We use the nltk library for convert-
ing documents to lists of sentences, and the SentenceTransformer library for
converting the sentences to their corresponding dense embedding space, where
E = 384. These libraries are subject to error which will tend to throw off our
results, but they provide the best results for our algorithm’s implementation.

A class Highlighter was instantiated. Note that ‘model.encode()‘ in Sen-
tenceTransformer takes quite a long time (in our cohort of documents, roughly
3 seconds per document). Therefore I found it was best to convert the cohort of
documents into a sparse vector representation and save it using ‘numpy.savetxt().‘
In practice we want to calculate HEIDI over multiple documents. Therefore we
store our documents as a MxNxE three-dimensional array, where M is the
number of documents, N is the maximum number of sentences, and E is the
embedding space. Note that E is uniform for all sentences, and N is chosen

3



by selecting the maximum number of sentences in all documents, and filling up
the documents with less than N sentences with 0⃗ vectors. Then, we will call
a helper function within the implementation to load in the three-dimensional
array and loop through the documents, calling HEIDI and storing each result
in a list.

4


